Nuprl Lemma : can-apply-fun-exp
11,40
postcript
pdf
A
:Type,
f
:(
A
(
A
+ Top)),
n
:
,
y
:
A
.
(
can-apply(
f
^
n
;
y
))
(
m
:
. (
m
n
)
(
can-apply(
f
^
m
;
y
)))
latex
ProofTree
Definitions
t
T
,
x
:
A
.
B
(
x
)
,
A
B
,
-
n
,
a
<
b
,
Void
,
x
:
A
B
(
x
)
,
P
Q
,
False
,
A
,
,
{
x
:
A
|
B
(
x
)}
,
,
f
^
n
,
f
o
g
,
f
(
a
)
,
Top
,
isl(
x
)
,
b
,
Type
,
,
True
,
P
Q
,
T
,
left
+
right
,
,
x
:
A
B
(
x
)
,
P
&
Q
,
P
Q
,
{
T
}
,
SQType(
T
)
,
p-id()
,
s
=
t
,
P
Q
,
Dec(
P
)
,
can-apply(
f
;
x
)
,
i
j
,
#$n
,
n
-
m
,
n
+
m
,
s
~
t
,
do-apply(
f
;
x
)
Lemmas
false
wf
,
ge
wf
,
nat
properties
,
nat
wf
,
top
wf
,
decidable
int
equal
,
nat
sq
,
bool
wf
,
squash
wf
,
true
wf
,
p-fun-exp-add
,
assert
wf
,
isl
wf
,
p-compose
wf
,
p-fun-exp
wf
,
le
wf
origin